Liquid Metal Pad

Introduction:

CRISS liquid metal thermal conductivity pad adopts 3-element alloy technology, with a melting point of 150 $^{\circ}$ C. It can be used for high power, high heat flux interface heat dissipation, and the thermal conductivity coefficient can reach 82 W/m \cdot k.

Advantage:

- Resistant to solvents such as water/ethanol-water/and fluorinated liquid
- Low pressure and high compression
- High consistency and stability

Typical Applications:

- Communication Equipment
- Network Terminal
- Automotive Electronics
- Consumer Electronics
- CPU, GPU, IGBT modules
- Chipset high-power LED components
- Aerospace

Parameters Table:

Properties	Test procedure	Unit	CRISS-LMD
Base material	/	/	Indium
Thermal conductivity	IS022007-2-2015	w/m·k	82
Density	ASTM D792	g/cm3	7.3
Working temperature	MIL-G-83528	$^{\circ}\! \mathbb{C}$	-50~150
Coefficient of thermal expansion	ASTM E831		40ppm/k

CRISS LMD TDS

Your Clear Choose

Electrical conductivity	ASTM D257	S/m	1.1E+06
-------------------------	-----------	-----	---------

ROHS & REACH

Complies with ROHS and REACH requirements.

Storage Instructions

- Unused products should be stored in well sealed packaging to prevent moisture from entering and affecting product quality;
- Storage humidity: RH < 70%;
- Storage time: 24 Months;
- Storage temperature: $5 \,^{\circ}\text{C} < T < 30 \,^{\circ}\text{C}$